

Compilation of pollen productivity estimates and a taxonomically harmonised PPE dataset from Northern Hemisphere extratropics

Mareike Wieczorek¹, Ulrike Herzschuh^{1,2,3}

¹Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Telegrafenberg A45, 14473
 ⁵Potsdam, Germany
 ²University of Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam, Germany
 ³University of Potsdam, Institute of Environmental Sciences and Geography 14476 Potsdam, Germany
 Correspondence to: Mareike Wieczorek (mareike.wieczorek@awi.de)

Abstract Pollen productivity estimates (PPEs) are fractionate values of relative pollen productivity, often in

- 10 relation to *Poaceae*, that allow vegetation cover to be estimated from pollen counts. PPEs are especially used in the European and Chinese scientific community, with a few studies in North America. Here we present a comprehensive compilation of available PPE studies and their results arising from 40 publications with 49 sites and 99 taxa. This compilation allows scientists to identify the best PPE for their own studies and to identify datagaps in need of further PPE analyses. We also present a taxonomically harmonised, unified PPE dataset, which
- 15 we generated from the available studies. Studies which did not have *Poaceae* as reference taxon were not included unless they included taxa which would otherwise drop out of the dataset. The unified dataset is based on 30 publications and 34 sites, and gives the mean PPE per taxon excluding outliers as well as fall speeds, which are necessary to reconstruct vegetation cover from pollen counts and PPE values. It contains 58 PPEs and 57 fall speeds, with 54 taxa having values for both. This dataset can be applied to broad scale or long-term
- 20 pollen-vegetation analyses. Data are openly available at <u>https://doi.pangaea.de/10.1594/PANGAEA.908862</u> (Wieczorek and Herzschuh, 2019).

1 Introduction

Pollen records are widely used for the reconstruction of vegetation composition (e.g. Bartlein et al., 1984; Li et al., 2019). However, such records need to be interpreted carefully, as different taxa have different pollen

- 25 productivities and dispersal abilities. While some taxa produce much and/or light pollen which is transported over large distances and thus overrepresented in the pollen records compared with vegetation, others produce little and/or heavy pollen which is hardly found in pollen records despite a high abundance of the taxon in the vegetation (e.g. Prentice, 1985; Prentice and Webb, 1986). To overcome these problems, pollen productivity estimates (PPE) and their fall speeds have been calculated for various regions and taxa (e.g. Baker et al., 2016;
- 30 Broström et al., 2004; Commerford et al., 2013; Wang and Herzschuh, 2011). Most of these studies are limited to north/central Europe and China. Some major review studies provide PPEs for a number of sites and taxa (e.g. Broström et al., 2008; Li et al., 2018; Mazier et al., 2008), but a study compiling all available PPEs from the Northern Hemisphere which would be useful to identify the most suitable dataset for a site-specific reconstruction is lacking. Furthermore, an easy-to-apply unified PPE dataset for Northern Hemispheric pollen
- would help to reduce the bias of pollen dispersal and pollen productivities in vegetation reconstructions using broad-scale pollen datasets by adopting a consistent approach.
 Here we present a compilation of available PPE-publications and a unified PPE and fall speed dataset for Northern Hemispheric pollen.

2 Methods

45

40 2.1 Literature search

To find literature on pollen productivity estimates (PPEs), we conducted internet searches in Google Scholar (https://scholar.google.de/) and the Web of Science (https://apps.webofknowledge.com/) for the terms "PPE", "Pollen productivity", "Pollen productivity estimates", "PPE America" and various combinations of our search terms. Furthermore, we used literature cited in publications on PPEs to gain a profound overview of existing literature about Northern Hemispheric PPEs.

A PPE is a correction factor used to reconstruct vegetation from pollen counts. It is given as a fraction relative to a reference taxon, typically *Poaceae*. Publications which did not provide such fractionate correction factors for specific regions or consisted only of compilations of previously available PPE data were excluded from all further analyses. Thus, of the resulting 54 publications from our literature search, 13 were excluded a priori and

50 are marked with an x in Table 1. The review of Li et al. (2018) does not contain newly calculated PPE, but is a collection of Chinese PPE studies, which of we incorporated those only available in Chinese language into our study. In the end, we use a total of 40 publications for our analyses.

2.2 PPE

In a first step, all PPE values and, if given, their standard deviation (SD) were collected from the literature. If the
 data were only presented as figures, values were extracted with the help of Corel Draw X6. Afterwards, all PPEs with SD>PPE and non-plausible PPEs >50 were excluded from the dataset. To obtain a reasonable taxonomic harmonisation, we assigned broader taxonomic levels to some taxa of the original publications and calculated means if more than one value of finer taxonomic levels was available (Table 2).

A complete compilation of PPE-data and their references is given in the Appendix. Some publications did not
use Poaceae as the reference taxon: while it is possible to recalculate values relative to Poaceae (cf. Li et al., 2018; Mazier et al., 2012), we confined our analysis to publications with Poaceae as the reference taxon. To achieve our goal of a unified PPE dataset for the whole Northern Hemisphere, boxplots of PPE per taxon were calculated with the help of R (version 3.5.3, R Core Team, 2019). A set of PPE-means per taxon was then created by calculating the mean of all values excluding outliers (defined as values outside the range of ±1.5 *

- 65 interquartile-range). The SE was estimated using the delta method (Stuart and Ord, 1994). Subsequently, we looked at those taxa for which PPEs are available but do not have Poaceae as the reference taxon. These comprise Eleaganaceae, *Nitraria*, *Tsuga*, wild herbs and PoaceaeCrop. For studies that included Poaceae in the analysis set, we set Poaceae as 1 and recalculated the other PPEs based on that ratio (applies to Sugita et al., 1999). For all other studies (Calcote, 1995; Chaput and Gajewski, 2018; Li et al., 2015; Matthias et al., 2012;
- 70 Theuerkauf et al., 2015), we recalculated the PPEs based on the original reference taxon. If, for example, Acer was used as the reference taxon, we assumed the Poaceae-to-Acer PPE to be the same as our calculated mean PPE for Acer and recalculated the other values based on that ratio. For Zhang et al. (2017) and Li et al. (2011) only values recalculated relative to Poaceae are available and extracted from Li et al. (2018), thus we did not conduct our own recalculations. Publications are not considered if neither Poaceae was used as a reference nor
- 75 species included for which no PPE would be available without recalculation (applies to Andersen, 1967; Bunting

et al., 2005; He et al., 2016; Li et al., 2015; Sjögren et al., 2008b; Theuerkauf et al., 2013; Twiddle et al., 2012; Wu et al., 2013; Zhang et al., 2017 (Changbai Mountains)).

2.3 Fall speeds

Fall speeds were extracted from all the compiled literature. If several values were available for one taxon (see Table A2), we calculated the mean. Taxonomic levels were combined according to Table 2.

3 Dataset

An overview of all locations is given in Figure 1, which clearly shows the absence of studies in Central Asia and large parts of Russia. Only a few studies have been conducted in North America. Of 40 publications covering 49 sites, a final number of 31 publications and 35 sites is included in the final PPE dataset

- 85 (https://doi.pangaea.de/10.1594/PANGAEA.908862, Wieczorek and Herzschuh, 2019). Nine publications + the Changbai site from Zhang et al. (2017) were excluded from calculations because Poaceae was not the reference taxon. Eight studies did not have Poaceae as the reference, but did include PPE values for taxa which would otherwise not be represented in the final PPE-dataset (applies to Calcote, 1995; Filipova-Marinova et al., 2010; Li et al., 2011; Matthias et al., 2012; Sugita et al., 1999, 2006; Theuerkauf et al., 2015; Zhang et al., 2017 (site
- 90 Taiyue)). These taxa are *Aesculus*, Elaeagnaceae, *Nitraria*, PoaceaeCrop, *Pterocrya*, *Tsuga* and wild.herbs (Table 3). The final dataset consists of PPE values for 58 taxa and fall speeds for 57 taxa, with 54 taxa having both PPE values and fall speeds available (Table 3). All PPE data in the final dataset are given relative to Poaceea, marked in red in Table 3.

4 Discussion

95 4.1 Data quality

While major taxa are available in the dataset, and often at the species level, a good geographic coverage is limited to central/northern Europe and China (Figure 1). PPE-studies in Russian and North American boreal forests as well as subtropical regions are largely lacking. The taxonomic resolution of available PPEs varies between studies and depends on the level to which pollen can be identified. Furthermore, while some taxa have a

100 broad scale of available PPEs, for 22 of them only one or two values are available in the complete dataset (Appendix). In the subset used for the creation of a unified PPE-set, 30 taxa (i.e. 54%) have only one or two PPEs that could be used to calculate the mean.

Comparisons with taxa available in the compilations of Mazier et al. (2012, Europe) and Li et al. (2018, China) clearly show regional differences in PPE values for some taxa (Figure 3, upper panel). While Cyperaceae or

- 105 Fraxinus, for example, have a similar range, PPEs for other taxa (e.g. Artemisia, Betula), strongly vary between the publications. The data used for our PPE dataset also show a high regional variability for some taxa (Figure 3, lower panel) and some PPEs vary strongly within a region. For example, in our dataset, values for Artemisia vary between 3.20 and 24.70 in China and Pinus varies from 1.35 to 21.58 in Europe (see Table A in the Appendix). Reasons for these variable PPE values have been discussed in detail by Broström et al. (2008) and Li
- 110 et al. (2018), and are mainly methodological factors such as different sampling designs, environmental factors

115

such as vegetation characteristics, and some uncertainty due to the use of inconsistent reference taxa. Most studies used *Poaceae*, a widespread family, whose pollen is easy to identify and often preserved in a good state. However, as discussed by Broström et al. (2008), the pollen cannot be identified to species level and different studies may thus have used different species of Poaceae for the reference. Other taxa such as *Quercus* or *Acer* are therefore sometimes used as the reference taxon (see Table A in the Appendix).

4.2 How to use the dataset

Using PPEs for pollen-based quantitative vegetation reconstruction (Sugita, 2007; Theuerkauf et al., 2016) has improved our understanding of environmental change (e.g. Marquer et al., 2014). In this paper, we present a dataset of Northern Hemispheric extratropical PPEs and corresponding fall speeds based on a compilation of

- 120 studies. This open access dataset can be used to improve our understanding of past vegetation dynamics for a broad range of taxa rather than interpreting pollen counts or percentages alone. To our knowledge, this is the first overview of available PPE studies covering the whole Northern Hemisphere. The compilation is useful for the identification of available PPE sets at specific sites and regions. Furthermore, it highlights where there are data gaps with respect to certain regions and taxa for future PPE studies.
- 125 The unified PPE dataset of Northern Hemispheric extratropical taxa allows a consistent approach to be applied to synthesised pollen data at a continental to hemispherical scale. Additionally, long-term pollen data, such as those collected as part of the ICDP drilling campaign (Andreev et al., 2012), comprise pollen spectra of varying taxa compositions and climate conditions, and PPEs from a nearby local study would not necessarily be best suited for their interpretation.

130 5 Data Availability

The PPE compilation as well as the taxonomically harmonised PPE dataset are available at https://doi.pangaea.de/10.1594/PANGAEA.908862 (Wieczorek and Herzschuh 2019).

6 Author Contribution

MW and UH designed the study and wrote the Manuscript, MW carried out the analyses and produced tables and figures.

7 Competing interests

The authors declare that they have no conflict of interest.

8 Acknowledgements

The study was supported by and conducted as part of the ERC consolidator grant "GlacialLegacy" (Call: ERC-

140 2017-COG, Project Reference: 772852) and PalMod Initiative (Grant 01LP1510C). We thank all scientists conducting research on pollen productivity, whose previous work and published data made our compilation possible. We thank C. Jenks for language correction. This study is a contribution to the Past Global Changes (PAGES) LandCover6k working group project.

145

165

175

9 References

Abraham, V. and Kozáková, R.: Relative pollen productivity estimates in the modern agricultural landscape of Central Bohemia (Czech Republic), Rev Palaeobot Palyno, 179, 1–12, doi:10.1016/j.revpalbo.2012.04.004, 2012.

150 Andersen, S. Th.: Tree-pollen rain in a mixed deciduous forest in South Jutland (Denmark), Rev Palaeobotand Palyno, 3(1), 267–275, doi:10.1016/0034-6667(67)90059-0, 1967.

Andreev, A. A., Morozova, E., Fedorov, G., Schirrmeister, L., Bobrov, A. A., Kienast, F. and Schwamborn, G.: Vegetation history of central Chukotka deduced from permafrost paleoenvironmental records of the El'gygytgyn Impact Crater, Clim Past, 8(4), 1287–1300, doi:10.5194/cp-8-1287-2012, 2012.

155 Baker, A. G., Zimny, M., Keczyński, A., Bhagwat, S. A., Willis, K. J. and Latałowa, M.: Pollen productivity estimates from old-growth forest strongly differ from those obtained in cultural landscapes: Evidence from the Białowieża National Park, Poland, The Holocene, 26(1), 80–92, doi:10.1177/0959683615596822, 2016.

Bartlein, P. J., Webb, T. and Fleri, E.: Holocene climatic change in the northern Midwest: Pollen-derived estimates, Quaternary Res, 22(3), 361–374, doi:10.1016/0033-5894(84)90029-2, 1984.

160 Binney, H. A., Gething, P. W., Nield, J. M., Sugita, S. and Edwards, M. E.: Tree line identification from pollen data: beyond the limit?, J Biogeogr, 38(9), 1792–1806, doi:10.1111/j.1365-2699.2011.02507.x, 2011.

Broström, A.: Estimating source area of pollen and pollen productivity in the cultural landscapes of southern Sweden - developing a palynological tool for quantifying past plant cover, Quaternary Scis, Department of Geology, Lund University. [online] Available from: http://lup.lub.lu.se/record/464945 (Accessed 26 November 2018), 2002.

Broström, A., Sugita, S. and Gaillard, M.-J.: Pollen productivity estimates for the reconstruction of past vegetation cover in the cultural landscape of southern Sweden, The Holocene, 14(3), 368–381, doi:10.1191/0959683604hl713rp, 2004.

Broström, A., Nielsen, A. B., Gaillard, M.-J., Hjelle, K., Mazier, F., Binney, H., Bunting, J., Fyfe, R., Meltsov,
V., Poska, A., Räsänen, S., Soepboer, W., von Stedingk, H., Suutari, H. and Sugita, S.: Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation: a review, Veget Hist Archaeobot, 17(5), 461–478, doi:10.1007/s00334-008-0148-8, 2008.

Bunting, M. J. and Hjelle, K. L.: Effect of vegetation data collection strategies on estimates of relevant source area of pollen (RSAP) and relative pollen productivity estimates (relative PPE) for non-arboreal taxa, Veget Hist Archaeobot, 19(4), 365–374, doi:10.1007/s00334-010-0246-2, 2010.

Bunting, M. J., Armitage, R., Binney, H. A. and Waller, M.: Estimates of relative pollen productivity' and relevant source area of pollen' for major tree taxa in two Norfolk (UK) woodlands, The Holocene, 15(3), 459–465, doi:10.1191/0959683605hl821rr, 2005.

Bunting, M. J., Schofield, J. E. and Edwards, K. J.: Estimates of relative pollen productivity (RPP) for selected
 taxa from southern Greenland: A pragmatic solution, Rev Palaeobot Palyno, 190, 66–74, doi:10.1016/j.revpalbo.2012.11.003, 2013.

Calcote, R.: Pollen source area and pollen productivity: Evidence from forest hollows, J Ecol, 83(4), 591–602, doi:10.2307/2261627, 1995.

Chaput, M. A. and Gajewski, K.: Relative pollen productivity estimates and changes in Holocene vegetation
 cover in the deciduous forest of southeastern Quebec, Canada, Botany, 96(5), 299–317, doi:10.1139/cjb-2017-0193, 2018.

Commerford, J. L., McLauchlan, K. K. and Sugita, S.: Calibrating vegetation cover and grassland pollen assemblages in the Flint Hills of Kansas, USA, Am J Plant Sci, 4(7A1), 1–10, doi:10.4236/ajps.2013.47A1001, 2013.

190 Duffin, K. I. and Bunting, M. J.: Relative pollen productivity and fall speed estimates for southern African savanna taxa, Veget Hist Archaeobot, 17(5), 507–525, doi:10.1007/s00334-007-0101-2, 2008.

Filipova-Marinova, M. V., Kvavadze, E. V., Connor, S. E. and Sjögren, P.: Estimating absolute pollen productivity for some European Tertiary-relict taxa, Veget Hist Archaeobot, 19(4), 351–364, doi:10.1007/s00334-010-0257-z, 2010.

195 Ge, Y., Li, Y., Yang, X., Zhang, R. and Xu, Q.: Relevant source area of pollen and relative pollen productivity estimates in Bashang steppe, Quat Sci., 35(4), 934-945 (In Chinese with English abstract), 2015.

Han, Y., Liu, H., Hao, Q., Liu, X., Guo, W. and Shangguan, H.: More reliable pollen productivity estimates and relative source area of pollen in a forest-steppe ecotone with improved vegetation survey, The Holocene, 27(10), 1567–1577, doi:10.1177/0959683617702234, 2017.

200 He, F., Li, Y., Wu, J. and Xu, Y.: A comparison of relative pollen productivity from forest steppe, typical steppe and desert steppe in Inner Mongolia, Chin. Sci. Bull., 61(31), 3388-3400 (In Chinese with English abstract), doi:10.1360/N972016-00482, 2016.

Heide, K. M. and Bradshaw, R.: The pollen—Tree relationship within forests of Wisconsin and Upper Michigan, U.S.A., Rev of Palaeobot Palynolo, 36(1), 1–23, doi:10.1016/0034-6667(82)90011-2, 1982.

- 205 Hellman, S. E. V., Gaillard, M., Broström, A. and Sugita, S.: Effects of the sampling design and selection of parameter values on pollen-based quantitative reconstructions of regional vegetation: a case study in southern Sweden using the REVEALS model, Veget Hist Archaeobot, 17(5), 445–459, doi:10.1007/s00334-008-0149-7, 2008.
- Hjelle, K. L.: Herb pollen representation in surface moss samples from mown meadows and pastures in western
 Norway, Veget Hist Archaebot, 7(2), 79–96, doi:10.1007/BF01373926, 1998.

Hjelle, K. L. and Sugita, S.: Estimating pollen productivity and relevant source area of pollen using lake sediments in Norway: How does lake size variation affect the estimates?, The Holocene, 22(3), 313–324, doi:10.1177/0959683611423690, 2012.

Hopla, E.-J.: A new perspective on Quaternary land cover in central Alaska, phd, University of Southampton,
 September. [online] Available from: https://eprints.soton.ac.uk/422162/ (Accessed 21 January 2019), 2017.

Li, F., Gaillard, M.-J., Sugita, S., Mazier, F., Xu, Q., Zhou, Z., Zhang, Y., Li, Y. and Laffly, D.: Relative pollen productivity estimates for major plant taxa of cultural landscapes in central eastern China, Veget Hist Archaeobot, 26(6), 587–605, doi:10.1007/s00334-017-0636-9, 2017.

Li, F., Gaillard, M.-J., Xu, Q., Bunting, M. J., Li, Y., Li, J., Mu, H., Lu, J., Zhang, P., Zhang, S., Cui, Q., Zhang,
 Y. and Shen, W.: A Review of Relative Pollen Productivity Estimates From Temperate China for Pollen-Based Quantitative Reconstruction of Past Plant Cover, Front Plant Sci., 9, 1214, doi:10.3389/fpls.2018.01214, 2018.

Li, H., Liu, X., Herzschuh, U., Cao, X., Yu, Z. and Wang, Y.: Vegetation and climate changes since the middle MIS 3 inferred from a Wulagai Lake pollen record, Inner Mongolia, Northeastern China, Rev Palaeobot Palyno, 262, 44–51, doi:10.1016/j.revpalbo.2018.12.006, 2019.

225 Li, Y., Bunting, M. J., Xu, Q., Jiang, S., Ding, W. and Hun, L.: Pollen–vegetation–climate relationships in some desert and desert-steppe communities in northern China, The Holocene, 21(6), 997–1010, doi:10.1177/0959683611400202, 2011.

Li, Y., Nielsen, A. B., Zhao, X., Shan, L., Wang, S., Wu, J. and Zhou, L.: Pollen production estimates (PPEs) and fall speeds for major tree taxa and relevant source areas of pollen (RSAP) in Changbai Mountain, northeastern China, Rev Palaeobot Palyno, 216, 92–100, doi:10.1016/j.revpalbo.2015.02.003, 2015.

235

240

250

Marquer, L., Gaillard, M.-J., Sugita, S., Trondman, A.-K., Mazier, F., Nielsen, A. B., Fyfe, R. M., Odgaard, B. V., Alenius, T., Birks, H. J. B., Bjune, A. E., Christiansen, J., Dodson, J., Edwards, K. J., Giesecke, T., Herzschuh, U., Kangur, M., Lorenz, S., Poska, A., Schult, M. and Seppä, H.: Holocene changes in vegetation composition in northern Europe: why quantitative pollen-based vegetation reconstructions matter, Quaternary Sci Rev, 90, 199–216, doi:10.1016/j.quascirev.2014.02.013, 2014.

Matthias, I., Nielsen, A. B. and Giesecke, T.: Evaluating the effect of flowering age and forest structure on pollen productivity estimates, Veget Hist Archaeobot, 21(6), 471–484, doi:10.1007/s00334-012-0373-z, 2012.

Mazier, F., Broström, A., Gaillard, M.-J., Sugita, S., Vittoz, P. and Buttler, A.: Pollen productivity estimates and relevant source area of pollen for selected plant taxa in a pasture woodland landscape of the Jura Mountains (Switzerland), Veget Hist Archaeobot, 17(5), 479–495, doi:10.1007/s00334-008-0143-0, 2008.

Mazier, F., Gaillard, M.-J., Kuneš, P., Sugita, S., Trondman, A.-K. and Broström, A.: Testing the effect of site selection and parameter setting on REVEALS-model estimates of plant abundance using the Czech Quaternary Palynological Database, Rev Palaeobot Palyno, 187, 38–49, doi:10.1016/j.revpalbo.2012.07.017, 2012.

McLauchlan, K. K., Barnes, C. S. and Craine, J. M.: Interannual variability of pollen productivity and transport in mid-North America from 1997 to 2009, Aerobiologia, 27(3), 181–189, doi:10.1007/s10453-010-9186-7, 2011.

Nielsen, A. B.: Modelling pollen sedimentation in Danish lakes at c.ad 1800: an attempt to validate the POLLSCAPE model, J Biogeogr, 31(10), 1693–1709, doi:10.1111/j.1365-2699.2004.01080.x, 2004.

Niemeyer, B., Klemm, J., Pestryakova, L. A. and Herzschuh, U.: Relative pollen productivity estimates for common taxa of the northern Siberian Arctic, Rev Palaeobot Palyno, 221, 71–82, doi:10.1016/j.revpalbo.2015.06.008, 2015.

Poska, A., Meltsov, V., Sugita, S. and Vassiljev, J.: Relative pollen productivity estimates of major anemophilous taxa and relevant source area of pollen in a cultural landscape of the hemi-boreal forest zone (Estonia), Rev Palaeobot Palyno, 167(1), 30–39, doi:10.1016/j.revpalbo.2011.07.001, 2011.

Prentice, I. C.: Pollen representation, source area, and basin size: Toward a unified theory of pollen analysis,
Quaternary Research, 23(1), 76–86, doi:10.1016/0033-5894(85)90073-0, 1985.

Prentice, I. C. and Webb, T.: Pollen percentages, tree abundances and the Fagerlind effect, J Quaternary Sci, 1(1), 35–43, doi:10.1002/jqs.3390010105, 1986.

R Core Team: R: A language and environment for statistical computing., R Foundation for Statistical Computing, Vienna, Austria. [online] Available from: https://www.R-project.org/, 2019.

260 Räsänen, S., Suutari, H. and Nielsen, A. B.: A step further towards quantitative reconstruction of past vegetation in Fennoscandian boreal forests: Pollen productivity estimates for six dominant taxa, Rev Palaeobot Palyno, 146(1), 208–220, doi:10.1016/j.revpalbo.2007.04.004, 2007.

Sjögren, P.: A pilot study on absolute pollen productivity estimates from mires in Norway, The Holocene, 23(10), 1487–1492, doi:10.1177/0959683613489582, 2013.

265 Sjögren, P., van Leeuwen, J. F. N., van der Knaap, W. O. and van der Borg, K.: The effect of climate variability on pollen productivity, AD 1975-2000, recorded in a Sphagnum peat hummock, The Holocene, 16(2), 277–286, doi:10.1191/0959683606hl924rp, 2006.

Sjögren, P., van der Knaap, W. O., O. Kaplan, J., van Leeuwen, J. F. N. and Ammann, B.: A pilot study on pollen representation of mountain valley vegetation in the central Alps, Rev Palaeobot Palyno, 149(3), 208–218, doi:10.1016/j.revpalbo.2007.12.006, 2008a.

Sjögren, P., van der Knaap, W. O., Huusko, A. and van Leeuwen, J. F. N.: Pollen productivity, dispersal, and correction factors for major tree taxa in the Swiss Alps based on pollen-trap results, Rev Palaeobot Palyno, 152(3–4), 200–210, doi:10.1016/j.revpalbo.2008.05.003, 2008b.

310

Soepboer, W., Sugita, S., Lotter, A. F., van Leeuwen, J. F. N. and van der Knaap, W. O.: Pollen productivity
 estimates for quantitative reconstruction of vegetation cover on the Swiss Plateau, The Holocene, 17(1), 65–77, doi:10.1177/0959683607073279, 2007.

Soepboer, W., Vervoort, J. M., Sugita, S. and Lotter, A. F.: Evaluating Swiss pollen productivity estimates using a simulation approach, Veget Hist Archaeobot, 17(5), 497–506, doi:10.1007/s00334-007-0128-4, 2008.

von Stedingk, H., Fyfe, R. M. and Allard, A.: Pollen productivity estimates from the forest—tundra ecotone in
 west-central Sweden: implications for vegetation reconstruction at the limits of the boreal forest, The Holocene, 18(2), 323–332, doi:10.1177/0959683607086769, 2008.

Stuart, A. and Ord, J. K.: Kendall's Advanced Theory of Statistic. Volume 1: Distribution Theory, Edward Arnold, London., 1994.

Sugita, S.: Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional
 vegetation composition, The Holocene, 17(2), 229–241, doi:10.1177/0959683607075837, 2007.

Sugita, S., Gaillard, M.-J. and Broström, A.: Landscape openness and pollen records: a simulation approach, The Holocene, 9(4), 409–421, doi:10.1191/095968399666429937, 1999.

Sugita, S., Parshall, T. and Calcote, R.: Detecting differences in vegetation among paired sites using pollen records, The Holocene, 16(8), 1123–1135, doi:10.1177/0959683606069406, 2006.

290 Sugita, S., Hicks, S. and Sormunen, H.: Absolute pollen productivity and pollen–vegetation relationships in northern Finland, J Quaternary Sci, 25(5), 724–736, doi:10.1002/jqs.1349, 2010.

Theuerkauf, M., Kuparinen, A. and Joosten, H.: Pollen productivity estimates strongly depend on assumed pollen dispersal, The Holocene, 23(1), 14–24, doi:10.1177/0959683612450194, 2013.

 Theuerkauf, M., Dräger, N., Kienel, U., Kuparinen, A. and Brauer, A.: Effects of changes in land management
 practices on pollen productivity of open vegetation during the last century derived from varved lake sediments, The Holocene, 25(5), 733–744, doi:10.1177/0959683614567881, 2015.

Theuerkauf, M., Couwenberg, J., Kuparinen, A. and Liebscher, V.: A matter of dispersal: REVEALSinR introduces state-of-the-art dispersal models to quantitative vegetation reconstruction, Veget Hist Archaeobot, 25(6), 541–553, doi:10.1007/s00334-016-0572-0, 2016.

- 300 Trondman, A.-K., Gaillard, M.-J., Mazier, F., Sugita, S., Fyfe, R., Nielsen, A. B., Twiddle, C., Barratt, P., Birks, H. J. B., Bjune, A. E., Björkman, L., Broström, A., Caseldine, C., David, R., Dodson, J., Dörfler, W., Fischer, E., Geel, B. van, Giesecke, T., Hultberg, T., Kalnina, L., Kangur, M., Knaap, P. van der, Koff, T., Kuneš, P., Lagerås, P., Latałowa, M., Lechterbeck, J., Leroyer, C., Leydet, M., Lindbladh, M., Marquer, L., Mitchell, F. J. G., Odgaard, B. V., Peglar, S. M., Persson, T., Poska, A., Rösch, M., Seppä, H., Veski, S. and Wick, L.: Pollen-
- based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling, Global Change Biol, 21(2), 676–697, doi:10.1111/gcb.12737, 2015.

Twiddle, C. L., Jones, R. T., Caseldine, C. J. and Sugita, S.: Pollen productivity estimates for a pine woodland in eastern Scotland: The influence of sampling design and vegetation patterning, Rev Palaeobot Palyno, 174, 67–78, doi:10.1016/j.revpalbo.2011.12.006, 2012.

Wang, Y. and Herzschuh, U.: Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model, Rev Palaeobot Palyno, 168(1), 31–40, doi:10.1016/j.revpalbo.2011.09.004, 2011.

 Wieczorek, M. and Herzschuh, U.: Compilation of pollen productivity estimates and a taxonomically
 harmonised PPE dataset from Northern Hemisphere extratropics, [online] Available from: https://doi.pangaea.de/10.1594/PANGAEA.908862 (Accessed 25 February 2020), 2019.

Wu, J., Ma, Y., Sang, Y., Meng, H. and Hu, C.: Quantitative reconstruction of palaeovegetation and development R-values model: an application of R-value and ERV model in Xinglong Mountain natural

protection region, Quat Sci, 33(3), 554–564.(In Chinese with English abstract), doi:10.3969/j.issn.1001-7410.2013.03.16, 2013.

Xu, Q., Cao, X., Tian, F., Zhang, S., Li, Y., Li, M., Li, J., Liu, Y. and Liang, J.: Relative pollen productivities of typical steppe species in northern China and their potential in past vegetation reconstruction, Sci China Earth Sci, 57(6), 1254–1266, doi:10.1007/s11430-013-4738-7, 2014.

Zhang, P.-P., Xu, Q.-H., Gaillard, M.-J., Mu, H.-S., Zhang, Y.-H. and Lu, J.-Y.: Research of main plant
 species's relative pollen productivities and relevant source area of temperate coniferous and broad-leaved mixed forest in Northern China., Quat Sci, 37(6), 1429-1443 (In Chinese with English abstract), doi:10.11928/j.issn.1001-7410.2017.06.24, 2017.

TABLES

Abraham and Kozáková, 2012	Li et al. in prep (from Li et al. 2018)
Andersen, 1967	Matthias et al., 2012
Baker et al., 2016	Mazier et al., 2008
x Binney et al., 2011	x Mazier et al., 2012
x Broström, 2002	x McLauchlan et al., 2011
x Broström et al., 2008	Nielsen, 2004
Broström et al., 2004	Niemeyer et al., 2015
Bunting et al., 2005	Poska et al., 2011
x Bunting and Hjelle, 2010	Räsänen et al., 2007
Bunting et al., 2013	Sjögren, 2013
Calcote, 1995	Sjögren et al., 2008a
Chaput and Gajewski, 2018	Sjögren et al., 2008b
Commerford et al., 2013	x Sjögren et al., 2006
x Duffin and Bunting, 2008	Soepboer et al., 2007
Filipova-Marinova et al., 2010	x Soepboer et al., 2008
Ge et al., 2015 (from Li et al. 2018)	Sugita et al., 1999
Han et al., 2017	x Sugita et al., 2010
He et al., 2016 (from Li et al. 2018)	Sugita et al., 2006
x Heide and Bradshaw, 1982	Theuerkauf et al., 2015
x Hellman et al., 2008	Theuerkauf et al., 2013
Hjelle, 1998	x Trondman et al., 2015
Hjelle and Sugita, 2012	Twiddle et al., 2012
Hopla, 2017	von Stedingk et al., 2008
Li et al., 2017	Wang and Herzschuh, 2011
Li et al., 2018 (review)	Wu et al., 2013 (from Li et al. 2018)
Li et al., 2011 (from Li et al. 2018)	Xu et al., 2014
Li et al., 2015	Zhang et al., 2017 (from Li et al. 2018)

330 Table 1: Publications returned by our literature research on pollen productivity estimates (PPEs). Literature not included in all further analyses is given in italics and marked with an x.

Table 2: Combination of taxonomic levels.

Taxon	Original Taxa
Acer	Acer + Acer rubrum + Acer saccharum
Alnus	Alnus + Alnus_shrub + Alnus_tree
Asteraceae	Asteraceae + Ambrosia + Asterac SF Cichor + Aster-Anthemis type + Compositae + Compositae SF Cichorioideae + Leucanthemum vulgate
Betula	<i>Betula</i> + <i>Betula_</i> shrub + <i>Betula_</i> tree
Brassicaceae	Brassicaceae + Sinapis
Campanulaceae	Campanulaceae + Campanula gieseckiana
Cornaceae	Cornaceae + Cornus
Elaeagnaceae	Elaeagnaceae + Hippohae
Ericales	Ericales + Ericaceae + Calluna + Calluna vulgaris + Empetrum + Vaccinium
Fabaceae	Fabaceae + Robinia Sophora + Cercis
Juniperus	Juniperus
Lamiaceae	Lamiaceae + Mentha type Thymus + Thymus praecox + Vitex negundo
Moraceae	Moraceae + Maclura
Orobanchaceae	Orobanchaceae + Rhinanthus type
Pinus	Pinus + Pinus cembra
Plantaginaceae	Plantaginaceae + Plantago + Plantago lanceolata + Plantago media + Plantago montana type + Plantago maritima
Poaceae	Poaceae + Graminae
PoaceaeCrop	Avena triticum + Avena type + Avena type b + Hordeum type + Secale + Triticum type
Ranunculaceae	Ranunculaceae + Ranunculus acris type + Trollius europaeus
Rosaceae	Rosaceae + Filipendula + Potentilla t.
Rubiaceae	Rubiaceae + Galium type
Rumex	Rumex + Rumex sect. acetosa + Rumex acetosella
Thymelaeaceae	Thymelaeaceae + Stellera
Tilia	Tilia + Tilia begoniifolia + Tilia tomentosa

345

	Table 3: Overview of Northern Hemispheric pollen productivity estimate (PPE) values with their standard
	error (SE) and pollen fall speed. Unknown SE are given with 0. PPE for taxa marked with an asterisk are
360	recalculated relative to Poaceae.

Таха	PPE	SE	Fall Speed (m/s)	Таха	PPE	SE	Fall Speed (m/s)
Abies	6.88	1.44	0.120	Lamiaceae	1.06	0.13	0.016
Acer	0.32	0.09	0.056	Larix	0.52	0.00	0.107
*Aesculus	3.43	0.00	0.042	Liliaceae	1.49	0.11	
Alnus	7.46	0.15	0.021	Moraceae	1.10	0.55	0.016
Apiaceae	0.24	0.00		*Nitraria	20.00	0.00	0.016
Artemisia	9.60	0.12	0.012	Orobanchaceae	0.33	0.04	0.038
Asteraceae	0.41	0.06	0.032	Picea	2.29	0.07	0.056
Betula	4.40	0.09	0.027	Pinus	10.47	0.70	0.035
Brassicaceae	4.19	0.19	0.019	Plantaginaceae	2.09	0.13	0.026
Campanulaceae	2.29	0.14	0.022	Poaceae	1.00	0.01	0.023
Carpinus	4.52	0.43	0.042	*PoaceaeCrop	5.50	0.90	0.065
Caryophyllaceae	0.74	0.07	0.034	Populus	0.67	0.09	0.026
Castanea	11.49	0.49	0.004	*Pterocarya	26.84	0.00	0.029
Cerealia	1.13	0.23	0.065	Quercus	3.33	0.11	0.023
Chenopodiaceae	4.01	0.32	0.016	Ranunculaceae	1.66	0.16	0.014
Convolvulaceae	0.18	0.03		Rosaceae	1.10	0.09	0.010
Cornaceae	1.72	0.14	0.044	Rubiaceae	1.85	0.16	0.019
Corylus	1.97	0.13	0.025	Rumex	1.61	0.15	0.015
Cupressaceae	1.11	0.09	0.010	Salix	0.57	0.03	0.022
Cyperaceae	0.76	0.03	0.024	Sambucus nigra-type	1.30	0.12	0.013
*Elaeagnaceae	8.88	1.30	0.016	Sanguisorba	24.07	3.50	
Ephedra	0.96	0.14	0.015	Selaginella			0.041
Equisetum	0.09	0.02	0.021	Solanaceae			0.027
Ericales	0.59	0.01	0.032	Thalictrum	3.86	0.26	0.009
Fabaceae	0.33	0.04	0.025	Thymelaeaceae	33.05	3.78	0.031
Fagus	1.96	0.08	0.057	Tilia	1.17	0.13	0.031
Fraxinus	1.25	0.11	0.020	*Tsuga	1.12	0.11	0.056
Humulus	16.43	1.00	0.010	Ulmus	7.32	1.23	0.021
Iridaceae			0.012	Urtica	10.52	0.31	0.007
Juglans	0.30	0.05	0.033	*wild herbs	0.11	0.11	0.034
Juniperus	9.80	0.67	0.016				

FIGURES

375

Figure 1: Location overview of studies on pollen productivity estimates, Studies in italics do not have Poaceae as reference taxon and are not included in the final dataset. Studies with ° are extracted from Li et al. 2018.

in relation to Poaceae 30 0.00 80.0 0 10 20 Sanguisorba n=1 n=1 Humulus n=1 Urtica n=9 Artemisia ŀ PoaceaeCrop n=3 Brassicaceae n=2 Ē Chenopodiaceae n=5 Thalictrum n=2 n=1 Campanulaceae Ð n=7 Plantaginaceae Н HERBACEOUS Cornaceae n=1 n=5 Ranunculaceae Rumex n=6 H n=1 Liliaceae 0.4 **∏**-+ Cerealia n=5 n=3 Lamiaceae нП n=26 Poaceae Cyperaceae n=15 n=2 Caryophyllaceae Ericales n=7 n=7 Asteraceae n=1 Orobanchaceae Apiaceae n=2 n=1 Convolvulaceae Wild.Herbs n=1 Equisetum n=1 Thymelaeaceae n=1 | | n=1 Pterocarya Nitraria n=1 n=1 Castanea n=11 ⊕ Pinus n=3 Juniperus n=1 Elaeagnaceae Alnus n=6 n=3 Ulmus Abies n=2 n=2 Carpinus ŀ· Betula n=12 Aesculus n=1 n=6 Ð Quercus Picea n=7 Corylus n=2 n=4 Fagus Rubiaceae n=5 H Sambucus nigra-type n=1 WOODY Fraxinus n=2 n=2 Tilia Tsuga n=3 n=1 Cupressaceae n=1 Moraceae Rosaceae ₽ n=8 n=1 Ephedra n=2 Populus \square ł n=7 Salix n=1 Larix ٥ 0 Fabaceae ŀ n=3 n=1 Acer Ð n=1 Juglans

Pollen Productivity Estimate (PPE)

Fall Speed (m/s)

0.16 Figure 2: Overview of all pollen productivity estimate (PPE) values (left panel) which were included in the calculation of a mean PPE. The higher the PPE, the higher the overrepresentation of a taxon in a pollen sample and vice versa. Fall speeds (right panel) which have been used to calculate a mean fall speed per taxon. The lower the fall speed, the farther a pollen grain can be carried through the air and vice versa. Pollen with a low PPE and a high fall speed are thus highly underrepresented in pollen samples.

H

380

Figure 3: Pollen productivity estimate (PPE) values for selected species, compared between different regions within this paper (upper panel) and different studies (lower panel), showing similar values for some and a high variability for other taxa. We chose those taxa which are present in at least two study regions or two publications.

Appendix

390

Table A1 Overview of available studies and their PPE values.

See attached pdf "Table A1 or <u>https://doi.pangaea.de/10.1594/PANGAEA.908862</u> - Compilation of pollen productivity estimates from Northern Hemisphere extratropics.

Table A2 Raw fall speeds with original pollen type, target taxon as used for our dataset, fall speed in m/s, the original publication of the value and the publication we are citing from

Pollen morphological type	Target taxon	FS (m/s)	Original publication	Found in:
Abies	Abies	0.12	Eisenhut, 1961	Cao et al., 2019
Abies	Abies	0.12	Mazier et al., 2012	Chaput and Gajewski, 2018
Acer	Acer	0.056	Mazier et al., 2012	Chaput and Gajewski, 2018
Acer	Acer	0.056	Sugita, 1993, 1994	Sugita et al., 1999
Achillea	Asteraceae	0.017		Bunting et al., 2013
Aesculus	Aesculus	0.029	Knoll, 1932	Flilipova-Marinova et al., 2010
Alnus	Alnus	0.021	Eisenhut, 1961	Cao et al., 2019
Alnus	Alnus	0.021	Eisenhut, 1961	Cao et al., 2019
Alnus	Alnus	0.021	Gaillard et al., 2008	Hjelle and Sugita, 2012
Amaranthaceae/Chenopodiaceae	Chenopodiaceae	0.027		Li et al., 2017
Ambrosia	Asteraceae	0.019		Commerford et al., 2013
Artemisia	Artemisia	0.007	Han et al., 2017	Li et al., 2018
Artemisia	Artemisia	0.007	Zhang et al., 2017	Li et al., 2018
Artemisia	Artemisia	0.009	Ge et al., 2015	Li et al., 2018
Artemisia	Artemisia	0.009	Li et al., in prep.	Li et al., 2018
Artemisia	Artemisia	0.009	Zhang et al., 2017	Li et al., 2018
Artemisia	Artemisia	0.0093		Xu et al., 2014
Artemisia	Artemisia	0.01	Li et al., 2011	Li et al., 2018
Artemisia	Artemisia	0.01	Wu et al., 2013	Li et al., 2018
Artemisia	Artemisia	0.0101		Wang and Herzschuh, 2011
Artemisia	Artemisia	0.013		Commerford et al., 2013
Artemisia	Artemisia	0.014		Abraham and Kozáková, 2012
Artemisia	Artemisia	0.021	He et al., 2016	Li et al., 2018
Artemisia	Artemisia	0.021		Poska et al., 2011
Artemisia	Artemisia	0.015		Li et al., 2017
Aster/Anthemis-type	Asteraceae	0.025		Li et al., 2017
Asteraceae	Asteraceae	0.0118		Xu et al., 2014
Asteraceae	Asteraceae	0.014		Commerford et al., 2013
Asteraceae	Asteraceae	0.051	Broström, 2002	Cao et al., 2019
Asteraceae SF	Asteraceae	0.028		Li et al., 2017
Avena-Triticum group (m)	PoaceaeCrop	0.06	Gregory, 1973	Theuerkauf et al., 2015
Avena-Typ (b)	PoaceaeCrop	0.06	Gregory, 1973	Theuerkauf et al., 2015
Avena-type	PoaceaeCrop	0.078	Soepboer et al., 2007	Matthias et al., 2012

Pollen morphological type	Target taxon	FS (m/s)	Original publication	Found in:
Betula	Betula	0.011	Wu et al., 2013	Li et al., 2018
Betula	Betula	0.011	Zhang et al., 2017	Li et al., 2018
Betula	Betula	0.017	Zhang et al., 2017	Li et al., 2018
Betula	Betula	0.018		Bunting et al., 2013
Betula	Betula	0.019	Han et al., 2017	Li et al., 2018
Betula	Betula	0.019		Li et al., 2015
Betula	Betula	0.024	Eisenhut, 1961	Cao et al., 2019
Betula	Betula	0.024	Eisenhut, 1961	Cao et al., 2019
Betula	Betula	0.024	Gaillard et al., 2008	Hjelle and Sugita, 2012
Betula	Betula	0.024	Jackson and Lyford, 1999	Bunting et al., 2013
Betula	Betula	0.024	Mazier et al., 2012	Chaput and Gajewski, 2018
Betula	Betula	0.11		Bunting et al., 2013
Brassicaceae	Brassicaceae	0.0034		Xu et al., 2014
Brassicaceae	Brassicaceae	0.02		Li et al., 2017
Calluna vulgaris	Ericales	0.038	Gaillard et al., 2008	Hjelle and Sugita, 2012
Calluna vulgaris	Ericales	0.038		Broström et al., 2004
Campanula	Campanulaceae	0.022		Bunting et al., 2013
Cannabis/Humulus	Humulus	0.01		Li et al., 2017
Carpinus	Carpinus	0.042	Eisenhut, 1961	Cao et al., 2019
Caryophyllaceae	Caryophyllaceae	0.028		Bunting et al., 2013
Caryophyllaceae	Caryophyllaceae	0.039		Li et al., 2017
Castanea	Castanea	0.004		Li et al., 2017
Cercis	Fabaceae	0.023	Dyakowska, 1936	Flilipova-Marinova et al., 2010
Cerealia	Cerealia	0.06	Broström et al., 2004	Poska et al., 2011
Cerealia	Cerealia	0.06	Gregory, 1961	Abraham and Kozáková, 2012
Cerealia	Cerealia	0.078		Soepboer et al., 2007
Cerealia type	Cerealia	0.06	Gregory, 1973	Sugita et al., 1999
Chenopodiaceae	Chenopodiaceae	0.0108		Xu et al., 2014
Chenopodiaceae	Chenopodiaceae	0.011		Commerford et al., 2013
Chenopodiaceae	Chenopodiaceae	0.0117		Wang and Herzschuh, 2011
Chenopodiaceae	Chenopodiaceae	0.019		Abraham and Kozáková, 2012
Cichorioideae				
Comp. SF Cichorioideae	Asteraceae	0.051		Broström et al., 2004
Cornus	Cornaceae	0.044		Commerford et al., 2013
Corylus	Corylus	0.025	Gregory, 1973	Cao et al., 2019
Corylus	Corylus	0.025	Knoll as cited in Gregory, 1973	Soepboer et al., 2007
Cupressaceae	Cupressaceae	0.01	Li et al., 2017	Li et al., 2018
Cupressaceae	Cupressaceae	0.01		Li et al., 2017
Cyperaceae	Cyperaceae	0.014	Li et al., in prep.	Li et al., 2018

Pollen morphological type	Target taxon	FS (m/s)	Original publication	Found in:
Cyperaceae	Cyperaceae	0.0152		Xu et al., 2014
Cyperaceae	Cyperaceae	0.017	Han et al., 2017	Li et al., 2018
Cyperaceae	Cyperaceae	0.019	Zhang et al., 2017	Li et al., 2018
Cyperaceae	Cyperaceae	0.023	Wu et al., 2013	Li et al., 2018
Cyperaceae	Cyperaceae	0.026		Bunting et al., 2013
Cyperaceae	Cyperaceae	0.028	He et al., 2016	Li et al., 2018
Cyperaceae	Cyperaceae	0.0291		Wang and Herzschuh, 2011
Cyperaceae	Cyperaceae	0.035		Sugita et al., 1999
Cyperaceae	Cyperaceae	0.037		Li et al., 2017
Elaeagnaceae	Elaeagnaceae	0.012	Zhang et al., 2017	Li et al., 2018
Elaeagnaceae	Elaeagnaceae	0.019	Zhang et al., 2017	Li et al., 2018
Empetrum	Ericales	0.019		Räsänen et al., 2007
Ephedra	Ephedra	0.015		Xu et al., 2014
Equisetum	Equisetum	0.021		Bunting et al., 2013
Ericaceae	Ericales	0.034	Broström et al., 2004	Cao et al., 2019
Fabaceae	Fabaceae	0.021		Commerford et al., 2013
Fagus	Fagus	0.055	Knoll as cited in Gregory, 1973	Soepboer et al., 2007
Fagus	Fagus	0.057	Gregory, 1973	Mazier et al., 2008
Fagus	Fagus	0.057	Mazier et al., 2012	Chaput and Gajewski, 2018
Fagus	Fagus	0.0603	Dyakowska, 1936	Flilipova-Marinova et al., 2010
Filipendula	Rosaceae	0.006		Broström et al., 2004
Fraxinus	Fraxinus	0.017		Li et al., 2015
Fraxinus	Fraxinus	0.022	Eisenhut, 1961	Cao et al., 2019
Gramineae	Poaceae	0.035		Sugita et al., 1999
Hordeum (m)	PoaceaeCrop	0.06	Gregory, 1973	Theuerkauf et al., 2015
Hordeum-type	PoaceaeCrop	0.06		Matthias et al., 2012
Iridaceae	Iridaceae	0.0121		Xu et al., 2014
Juglans	Juglans	0.028	Zhang et al., 2017	Li et al., 2018
Juglans	Juglans	0.03		Li et al., 2015
Juglans	Juglans	0.031	Zhang et al., 2017	Li et al., 2018
Juglans	Juglans	0.037	Bodmer, 1922	Li et al. 2015
Juglans regia	Juglans	0.037		Li et al., 2017
Juniperus	Juniperus	0.016	Eisenhut, 1961	Broström et al., 2004
Larix	Larix	0.027	Zhang et al., 2017	Li et al., 2018
Larix	Larix	0.117	Zhang et al., 2017	Li et al., 2018
Larix	Larix	0.126	Eisenhut, 1961	Cao et al., 2019
Larix	Larix	0.131	Eisenhut, 1961	Li et al., 2015
Larix	Larix	0.135		Li et al., 2015
Lespedeza-type	Fabaceae	0.036		Li et al., 2017
Maclura	Moraceae	0.016		Commerford et al., 2013
Nitraria	Nitraria	0.016	Li et al., 2011	Li et al., 2018
Picea	Picea	0.056	Eisenhut, 1961	Cao et al., 2019
Picea	Picea	0.056	Mazier et al., 2012	Chaput and Gajewski, 2018

Pollen morphological type	Target taxon	FS (m/s)	Original publication	Found in:
Pinus	Pinus	0.028	Li et al., 2017	Li et al., 2018
Pinus	Pinus	0.03	Zhang et al., 2017	Li et al., 2018
Pinus	Pinus	0.031	Eisenhut, 1961	Cao et al., 2019
Pinus	Pinus	0.039	Han et al., 2017	Li et al., 2018
Pinus	Pinus	0.039	, i i i i i i i i i i i i i i i i i i i	Li et al., 2015
Pinus	Pinus	0.041	Dyakowska, 1936	Soepboer et al., 2007
Pinus	Pinus	0.041	Zhang et al., 2017	Li et al., 2018
Pinus	Pinus	0.028		Li et al., 2017
Plantago	Plantaginaceae	0.024		Mazier et al., 2008
Plantago	Plantaginaceae	0.03		Mazier et al., 2008
Plantago lanceolata	Plantaginaceae	0.019		Bunting et al., 2013
Plantago lanceolata	Plantaginaceae	0.029		Broström et al., 2004
Poaceae	Poaceae	0.016		Xu et al., 2014
Poaceae	Poaceae	0.016	Xu et al., 2014	Li et al., 2018
Poaceae	Poaceae	0.017	Li et al., in prep.	Li et al., 2018
Poaceae	Poaceae	0.017		Bunting et al., 2013
Poaceae	Poaceae	0.017	Zhang et al., 2017	Li et al., 2018
Poaceae	Poaceae	0.0185		Wang and Herzschuh, 2011
Poaceae	Poaceae	0.02	Zhang et al., 2017	Li et al., 2018
Poaceae	Poaceae	0.022	Han et al., 2017	Li et al., 2018
Poaceae	Poaceae	0.022		Li et al., 2017
Poaceae	Poaceae	0.023	Li et al., 2011	Li et al., 2018
Poaceae	Poaceae	0.032	He et al., 2016	Li et al., 2018
Poaceae	Poaceae	0.034	Wu et al., 2013	Li et al., 2018
Poaceae	Poaceae	0.035	Sugita et al., 1999	Mazier et al., 2008
Populus	Populus	0.025	Eisenhut, 1961	Matthias et al., 2012
Populus	Populus	0.027		Commerford et al., 2013
Potentilla type	Rosaceae	0.0066		Xu et al., 2014
potentilla type	Rosaceae	0.011		Bunting et al., 2013
Potentilla type	Rosaceae	0.018		Broström et al., 2004
Pterocarya	Pterocarya	0.042	Eisenhut, 1961	Flilipova-Marinova et al., 2010
Quercus	Quercus	0.016	Zhang et al., 2017	Li et al., 2018
Quercus	Quercus	0.018	Han et al., 2017	Li et al., 2018
Quercus	Quercus	0.018		Li et al., 2015
Quercus	Quercus	0.018	Wu et al., 2013	Li et al., 2018
Quercus	Quercus	0.019	Zhang et al., 2017	Li et al., 2018
Quercus	Quercus	0.035	Eisenhut, 1961	Cao et al., 2019
Quercus	Quercus	0.035	Mazier et al. 2012	Chaput and Gajewski, 2018
Quercus	Quercus	0.025		Li et al., 2017
Ranunculaceae	Ranunculaceae	0.014		Broström et al., 2004
Ranunculaceae	Ranunculaceae	0.015		Bunting et al., 2013
Rhinantus-type	Orobanchaceae	0.038		Bunting et al., 2013
Robinia/Sophora	Fabaceae	0.021		Li et al., 2017

Pollen morphological type	Target taxon	FS (m/s)	Original publication	Found in:
Rubiaceae	Rubiaceae	0.019		Broström et al., 2004
Rumex acetosa	Rumex	0.013		Bunting et al., 2013
Rumex acetosa	Rumex	0.018	Jackson and Lyford, 1999	Bunting et al., 2013
Rumex acetosa type	Rumex	0.018		Broström et al., 2004
Rumex acetosella	Rumex	0.009	Broström et al., 2004	Bunting et al., 2013
Rumex acetosella	Rumex	0.016		Bunting et al., 2013
Salix	Salix	0.009		Bunting et al., 2013
Salix	Salix	0.022	Gregory, 1973	Sugita et al., 1999
Salix	Salix	0.022	Jackson and Lyford, 1999	Bunting et al., 2013
Salix	Salix	0.022	Sugita et al., 1999	Poska et al., 2011
Salix	Salix	0.034	Gregory, 1973	Cao et al., 2019
Sambucus nigra-type	Sambucus nigra-type	0.013		Abraham and Kozáková, 2012
Saussurea/Carduus/Cirsium- type	Asteraceae	0.075		Li et al., 2017
Secale cereale (m)	PoaceaeCrop	0.06	Gregory, 1973	Theuerkauf et al., 2015
Selaginella	Selaginella	0.041		Li et al., 2017
Sinapis type (m)	Brassicaceae	0.035		Theuerkauf et al., 2015
Solanum nigrum-type	Solanaceae	0.027		Li et al., 2017
Thalictrum	Thalictrum	0.0066		Xu et al., 2014
Thalictrum	Thalictrum	0.012		Bunting et al., 2013
Thymus	Thymelaeaceae	0.031		Bunting et al., 2013
Tilia	Tilia	0.03		Li et al., 2015
Tilia	Tilia	0.032	Gregory, 1973	Cao et al., 2019
Triticum	PoaceaeCrop	0.078	Soepboer et al., 2007	Matthias et al., 2012
Triticum-Typ (b)	PoaceaeCrop	0.06	Gregory, 1973	Theuerkauf et al., 2015
Trollius europaeus	Ranunculaceae	0.013		Mazier et al., 2008
Tsuga	Tsuga	0.056	Gaillard et al., 2008	Chaput and Gajewski, 2018
Ulmus	Ulmus	0.0095		Xu et al., 2014
Ulmus	Ulmus	0.01	Xu et al., 2014	Li et al., 2018
Ulmus	Ulmus	0.022	Han et al., 2017	Li et al., 2018
Ulmus	Ulmus	0.022		Li et al., 2015
Ulmus	Ulmus	0.032	Gregory, 1973	Cao et al., 2019
Ulmus	Ulmus	0.032		Li et al., 2017
Urtica	Urtica	0.007		Abraham and Kozáková, 2012
Vaccinium	Ericales	0.029		Räsänen et al., 2007
Vitex negundo	Lamiaceae	0.016		Li et al., 2017
wild herbs	wild herbs	0.0343		Matthias et al., 2012
Zea mays		0.185		Li et al., 2017

395 References Appendix

Fall speeds

Abraham, V. and Kozáková, R.: Relative pollen productivity estimates in the modern agricultural landscape of Central Bohemia (Czech Republic), Rev Palaeobot Palyno, 179, 1–12, doi:10.1016/j.revpalbo.2012.04.004, 2012.

400 Bodmer, H.: Über den Windpollen., 1922.

Broström, A.: Estimating source area of pollen and pollen productivity in the cultural landscapes of southern Sweden - developing a palynological tool for quantifying past plant cover, Quaternary Sci, Department of Geology, Lund University. [online] Available from: http://lup.lub.lu.se/record/464945 (Accessed 26 November 2018), 2002.

405 Broström, A., Sugita, S. and Gaillard, M.-J.: Pollen productivity estimates for the reconstruction of past vegetation cover in the cultural landscape of southern Sweden, The Holocene, 14(3), 368–381, doi:10.1191/0959683604hl713rp, 2004.

Bunting, M. J., Schofield, J. E. and Edwards, K. J.: Estimates of relative pollen productivity (RPP) for selected taxa from southern Greenland: A pragmatic solution, Rev Palaeobot Palyno, 190, 66–74, doi:10.1016/j.raynalbo.2012.11.003.2013

410 doi:10.1016/j.revpalbo.2012.11.003, 2013.

Cao, X., Tian, F., Li, F., Gaillard, M.-J., Rudaya, N., Xu, Q. and Herzschuh, U.: Pollen-based quantitative landcover reconstruction for northern Asia covering the last 40 ka cal BP, Climate of the Past, 15(4), 1503–1536, doi:https://doi.org/10.5194/cp-15-1503-2019, 2019.

Chaput, M. A. and Gajewski, K.: Relative pollen productivity estimates and changes in Holocene vegetation
 cover in the deciduous forest of southeastern Quebec, Canada, Botany, 96(5), 299–317, doi:10.1139/cjb-2017-0193, 2018.

Commerford, J. L., McLauchlan, K. K. and Sugita, S.: Calibrating vegetation cover and grassland pollen assemblages in the Flint Hills of Kansas, USA, American J Plant Sci, 4(7A1), 1–10, doi:10.4236/ajps.2013.47A1001, 2013.

420 Dyakowska, J.: Researches on the rapidity of the falling down of pollen of some trees, nakl. Polskiej Akademji Umiejętności., 1936.

Eisenhut, G.: Untersuchungen über die Morphologie und Ökologie der Pollenkörner Heimischer und Fremdländischer Waldbäume, Paul Parey, Hamburg., 1961.

Filipova-Marinova, M. V., Kvavadze, E. V., Connor, S. E. and Sjögren, P.: Estimating absolute pollen
 productivity for some European Tertiary-relict taxa, Veget Hist Archaeobot, 19(4), 351–364, doi:10.1007/s00334-010-0257-z, 2010.

Gaillard, M.-J., Sugita, S., Bunting, J., Dearing, J. and Bittmann, F.: Human impact on terrestrial ecosystems, pollen calibration and quantitative reconstruction of past land-cover, Veget Hist Archaeobot, 17(5), 415–418, doi:10.1007/s00334-008-0170-x, 2008.

430 Ge, Y., Li, Y., Yang, X., Zhang, R. and Xu, Q.: Relevant source area of pollen and relative pollen productivity estimates in Bashang steppe, Quat Sci, 35(4), 934-945 (In Chinese with English abstract), 2015.

Gregory, P. H.: The microbiology of the atmosphere, London, L. Hill; New York, Interscience Publishers. [online] Available from: http://archive.org/details/microbiologyofat00greg (Accessed 3 May 2019), 1961.

Gregory, P. H.: Microbiology of the atmosphere, Leonhard Hill, Aylesbury (Bucks.), 1973.

435 Han, Y., Liu, H., Hao, Q., Liu, X., Guo, W. and Shangguan, H.: More reliable pollen productivity estimates and relative source area of pollen in a forest-steppe ecotone with improved vegetation survey, The Holocene, 27(10), 1567–1577, doi:10.1177/0959683617702234, 2017.

He, F., Li, Y., Wu, J. and Xu, Y.: A comparison of relative pollen productivity from forest steppe, typical steppe and desert steppe in Inner Mongolia, Chin Sci Bull, 61(31), 3388-3400 (In Chinese with English abstract), doi:10.1360/N972016-00482, 2016.

Hjelle, K. L. and Sugita, S.: Estimating pollen productivity and relevant source area of pollen using lake sediments in Norway: How does lake size variation affect the estimates?, The Holocene, 22(3), 313–324, doi:10.1177/0959683611423690, 2012.

Jackson, S. T. and Lyford, M. E.: Pollen dispersal models in Quaternary plant ecology: Assumptions, parameters, and prescriptions, Bot. Rev, 65(1), 39–75, doi:10.1007/BF02856557, 1999.

Knoll F.: Über die Fernverbreitung des Blütenstaubes durch den Wind. Forschungen und Fortschritte: Nachrichtenbl. Deutsch. Wiss. Tech. 8:301–302, 1932

Li, F., Gaillard, M.-J., Sugita, S., Mazier, F., Xu, Q., Zhou, Z., Zhang, Y., Li, Y. and Laffly, D.: Relative pollen productivity estimates for major plant taxa of cultural landscapes in central eastern China, Veget Hist
 Archaeobot, 26(6), 587–605, doi:10.1007/s00334-017-0636-9, 2017.

Li, F., Gaillard, M.-J., Xu, Q., Bunting, M. J., Li, Y., Li, J., Mu, H., Lu, J., Zhang, P., Zhang, S., Cui, Q., Zhang, Y. and Shen, W.: A Review of Relative Pollen Productivity Estimates From Temperate China for Pollen-Based Quantitative Reconstruction of Past Plant Cover, Front Plant Sci, 9, 1214, doi:10.3389/fpls.2018.01214, 2018.

Li, Y., Bunting, M. J., Xu, Q., Jiang, S., Ding, W. and Hun, L.: Pollen–vegetation–climate relationships in some
 desert and desert-steppe communities in northern China, The Holocene, 21(6), 997–1010,
 doi:10.1177/0959683611400202, 2011.

Li, Y., Nielsen, A. B., Zhao, X., Shan, L., Wang, S., Wu, J. and Zhou, L.: Pollen production estimates (PPEs) and fall speeds for major tree taxa and relevant source areas of pollen (RSAP) in Changbai Mountain, northeastern China, Rev Palaeobot Palyno, 216, 92–100, doi:10.1016/j.revpalbo.2015.02.003, 2015.

460 Matthias, I., Nielsen, A. B. and Giesecke, T.: Evaluating the effect of flowering age and forest structure on pollen productivity estimates, Veget Hist Archaeobot, 21(6), 471–484, doi:10.1007/s00334-012-0373-z, 2012.

Mazier, F., Broström, A., Gaillard, M.-J., Sugita, S., Vittoz, P. and Buttler, A.: Pollen productivity estimates and relevant source area of pollen for selected plant taxa in a pasture woodland landscape of the Jura Mountains (Switzerland), Veget Hist Archaeobot, 17(5), 479–495, doi:10.1007/s00334-008-0143-0, 2008.

465 Mazier, F., Gaillard, M.-J., Kuneš, P., Sugita, S., Trondman, A.-K. and Broström, A.: Testing the effect of site selection and parameter setting on REVEALS-model estimates of plant abundance using the Czech Quaternary Palynological Database, Rev Palaeobot Palyno, 187, 38–49, doi:10.1016/j.revpalbo.2012.07.017, 2012.

Poska, A., Meltsov, V., Sugita, S. and Vassiljev, J.: Relative pollen productivity estimates of major anemophilous taxa and relevant source area of pollen in a cultural landscape of the hemi-boreal forest zone (Estonia), Rev Palaeobot Palyno, 167(1), 30–39, doi:10.1016/j.revpalbo.2011.07.001, 2011.

Räsänen, S., Suutari, H. and Nielsen, A. B.: A step further towards quantitative reconstruction of past vegetation in Fennoscandian boreal forests: Pollen productivity estimates for six dominant taxa, Rev Palaeobot Palyno, 146(1), 208–220, doi:10.1016/j.revpalbo.2007.04.004, 2007.

Soepboer, W., Sugita, S., Lotter, A. F., van Leeuwen, J. F. N. and van der Knaap, W. O.: Pollen productivity
 estimates for quantitative reconstruction of vegetation cover on the Swiss Plateau, The Holocene, 17(1), 65–77, doi:10.1177/0959683607073279, 2007.

Sugita, S.: A Model of pollen source area for an entire lake surface, Quaternary Res, 39(2), 239–244, doi:10.1006/qres.1993.1027, 1993.

Sugita, S.: Pollen Representation of Vegetation in Quaternary Sediments: Theory and Method in Patchy
 Vegetation, J Ecol, 82(4), 881–897, doi:10.2307/2261452, 1994.

Sugita, S., Gaillard, M.-J. and Broström, A.: Landscape openness and pollen records: a simulation approach, The Holocene, 9(4), 409–421, doi:10.1191/095968399666429937, 1999.

Theuerkauf, M., Dräger, N., Kienel, U., Kuparinen, A. and Brauer, A.: Effects of changes in land management practices on pollen productivity of open vegetation during the last century derived from varved lake sediments,
The Holocene, 25(5), 733–744, doi:10.1177/0959683614567881, 2015.

Wang, Y. and Herzschuh, U.: Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model, Rev Palaeobot Palyno, 168(1), 31–40, doi:10.1016/j.revpalbo.2011.09.004, 2011.

Wu, J., Ma, Y., Sang, Y., Meng, H. and Hu, C.: Quantitative reconstruction of palaeovegetation and
 development R-values model: an application of R-value and ERV model in Xinglong Mountain natural protection region, Quat. Sci., 33(3), 554–564. (In Chinese with English abstract), doi:10.3969/j.issn.1001-7410.2013.03.16, 2013.

Xu, Q., Cao, X., Tian, F., Zhang, S., Li, Y., Li, M., Li, J., Liu, Y. and Liang, J.: Relative pollen productivities of typical steppe species in northern China and their potential in past vegetation reconstruction, Sci China Earth
 Sci, 57(6), 1254–1266, doi:10.1007/s11430-013-4738-7, 2014.

Zhang, P.-P., Xu, Q.-H., Gaillard, M.-J., Mu, H.-S., Zhang, Y.-H. and Lu, J.-Y.: Research of main plant species's relative pollen productivities and relevant source area of temperate coniferous and broad-leaved mixed forest in Northern China., Quat Sci., 37(6), 1429-1443 (In Chinese with English abstract), doi:10.11928/j.issn.1001-7410.2017.06.24, 2017.

500

515

PPE Dataset

Abraham, V. and Kozáková, R.: Relative pollen productivity estimates in the modern agricultural landscape of Central Bohemia (Czech Republic), Rev Palaeobot Palyno, 179, 1–12, doi:10.1016/j.revpalbo.2012.04.004, 2012.

505 Andersen, S. Th.: Tree-pollen rain in a mixed deciduous forest in South Jutland (Denmark), Rev Palaeobot Palyno, 3(1), 267–275, doi:10.1016/0034-6667(67)90059-0, 1967.

Baker, A. G., Zimny, M., Keczyński, A., Bhagwat, S. A., Willis, K. J. and Latałowa, M.: Pollen productivity estimates from old-growth forest strongly differ from those obtained in cultural landscapes: Evidence from the Białowieża National Park, Poland, The Holocene, 26(1), 80–92, doi:10.1177/0959683615596822, 2016.

510 Broström, A., Sugita, S. and Gaillard, M.-J.: Pollen productivity estimates for the reconstruction of past vegetation cover in the cultural landscape of southern Sweden, The Holocene, 14(3), 368–381, doi:10.1191/0959683604hl713rp, 2004.

Bunting, M. J., Armitage, R., Binney, H. A. and Waller, M.: Estimates of relative pollen productivity' and relevant source area of pollen' for major tree taxa in two Norfolk (UK) woodlands, The Holocene, 15(3), 459–465, doi:10.1191/0959683605hl821rr, 2005.

Bunting, M. J., Schofield, J. E. and Edwards, K. J.: Estimates of relative pollen productivity (RPP) for selected taxa from southern Greenland: A pragmatic solution, Rev Palaeobot Palyno, 190, 66–74, doi:10.1016/j.revpalbo.2012.11.003, 2013.

Calcote, R.: Pollen Source Area and Pollen Productivity: Evidence from Forest Hollows, J Ecol, 83(4), 591–602, doi:10.2307/2261627, 1995.

Chaput, M. A. and Gajewski, K.: Relative pollen productivity estimates and changes in Holocene vegetation cover in the deciduous forest of southeastern Quebec, Canada, Botany, 96(5), 299–317, doi:10.1139/cjb-2017-0193, 2018.

Commerford, J. L., McLauchlan, K. K. and Sugita, S.: Calibrating vegetation cover and grassland pollen
 assemblages in the Flint Hills of Kansas, USA, Am J Plant Sci, 4(7A1), 1–10, doi:10.4236/ajps.2013.47A1001, 2013.

540

550

Filipova-Marinova, M. V., Kvavadze, E. V., Connor, S. E. and Sjögren, P.: Estimating absolute pollen productivity for some European Tertiary-relict taxa, Veget Hist Archaeobot, 19(4), 351–364, doi:10.1007/s00334-010-0257-z, 2010.

530 Ge, Y., Li, Y., Yang, X., Zhang, R. and Xu, Q.: Relevant source area of pollen and relative pollen productivity estimates in Bashang steppe, Quat Sci, 35(4), 934-945 (In Chinese with English abstract), 2015.

Han, Y., Liu, H., Hao, Q., Liu, X., Guo, W. and Shangguan, H.: More reliable pollen productivity estimates and relative source area of pollen in a forest-steppe ecotone with improved vegetation survey, The Holocene, 27(10), 1567–1577, doi:10.1177/0959683617702234, 2017.

535 He, F., Li, Y., Wu, J. and Xu, Y.: A comparison of relative pollen productivity from forest steppe, typical steppe and desert steppe in Inner Mongolia, Chin Sci Bull, 61(31), 3388-3400 (In Chinese with English abstract), doi:10.1360/N972016-00482, 2016.

Hjelle, K. L. and Sugita, S.: Estimating pollen productivity and relevant source area of pollen using lake sediments in Norway: How does lake size variation affect the estimates?, The Holocene, 22(3), 313–324, doi:10.1177/0959683611423690, 2012.

Hjelle, K. L.: Herb pollen representation in surface moss samples from mown meadows and pastures in western Norway, Veget Hist Archaebot, 7(2), 79–96, doi:10.1007/BF01373926, 1998.

Hopla, E.-J.: A new perspective on Quaternary land cover in central Alaska, phd, University of Southampton, September. [online] Available from: https://eprints.soton.ac.uk/422162/ (Accessed 21 January 2019), 2017.

545 Li, F., Gaillard, M.-J., Sugita, S., Mazier, F., Xu, Q., Zhou, Z., Zhang, Y., Li, Y. and Laffly, D.: Relative pollen productivity estimates for major plant taxa of cultural landscapes in central eastern China, Veget Hist Archaeobot, 26(6), 587–605, doi:10.1007/s00334-017-0636-9, 2017.

Li, Y., Bunting, M. J., Xu, Q., Jiang, S., Ding, W. and Hun, L.: Pollen–vegetation–climate relationships in some desert and desert-steppe communities in northern China, The Holocene, 21(6), 997–1010, doi:10.1177/0959683611400202, 2011.

Li, Y., Nielsen, A. B., Zhao, X., Shan, L., Wang, S., Wu, J. and Zhou, L.: Pollen production estimates (PPEs) and fall speeds for major tree taxa and relevant source areas of pollen (RSAP) in Changbai Mountain, northeastern China, Rev Palaeobot Palyno, 216, 92–100, doi:10.1016/j.revpalbo.2015.02.003, 2015.

Matthias, I., Nielsen, A. B. and Giesecke, T.: Evaluating the effect of flowering age and forest structure on pollen productivity estimates, Veget Hist Archaeobot, 21(6), 471–484, doi:10.1007/s00334-012-0373-z, 2012.

Mazier, F., Broström, A., Gaillard, M.-J., Sugita, S., Vittoz, P. and Buttler, A.: Pollen productivity estimates and relevant source area of pollen for selected plant taxa in a pasture woodland landscape of the Jura Mountains (Switzerland), Veget Hist Archaeobot, 17(5), 479–495, doi:10.1007/s00334-008-0143-0, 2008.

Nielsen, A. B.: Modelling pollen sedimentation in Danish lakes at c.ad 1800: an attempt to validate the
 POLLSCAPE model, J Biogeogr, 31(10), 1693–1709, doi:10.1111/j.1365-2699.2004.01080.x, 2004.

Niemeyer, B., Klemm, J., Pestryakova, L. A. and Herzschuh, U.: Relative pollen productivity estimates for common taxa of the northern Siberian Arctic, Rev Palaeobot Palyno, 221, 71–82, doi:10.1016/j.revpalbo.2015.06.008, 2015.

Poska, A., Meltsov, V., Sugita, S. and Vassiljev, J.: Relative pollen productivity estimates of major
 anemophilous taxa and relevant source area of pollen in a cultural landscape of the hemi-boreal forest zone (Estonia), Rev Palaeobot Palyno, 167(1), 30–39, doi:10.1016/j.revpalbo.2011.07.001, 2011.

Räsänen, S., Suutari, H. and Nielsen, A. B.: A step further towards quantitative reconstruction of past vegetation in Fennoscandian boreal forests: Pollen productivity estimates for six dominant taxa, Rev Palaeobot Palyno, 146(1), 208–220, doi:10.1016/j.revpalbo.2007.04.004, 2007.

570 Sjögren, P.: A pilot study on absolute pollen productivity estimates from mires in Norway, The Holocene, 23(10), 1487–1492, doi:10.1177/0959683613489582, 2013.

580

595

605

Sjögren, P., van der Knaap, W. O., O. Kaplan, J., van Leeuwen, J. F. N. and Ammann, B.: A pilot study on pollen representation of mountain valley vegetation in the central Alps, Rev Palaeobot Palyno, 149(3), 208–218, doi:10.1016/j.revpalbo.2007.12.006, 2008a.

575 Sjögren, P., van der Knaap, W. O., Huusko, A. and van Leeuwen, J. F. N.: Pollen productivity, dispersal, and correction factors for major tree taxa in the Swiss Alps based on pollen-trap results, Rev Palaeobot Palyno, 152(3–4), 200–210, doi:10.1016/j.revpalbo.2008.05.003, 2008b.

Soepboer, W., Sugita, S., Lotter, A. F., van Leeuwen, J. F. N. and van der Knaap, W. O.: Pollen productivity estimates for quantitative reconstruction of vegetation cover on the Swiss Plateau, The Holocene, 17(1), 65–77, doi:10.1177/0959683607073279, 2007.

Sugita, S., Gaillard, M.-J. and Broström, A.: Landscape openness and pollen records: a simulation approach, The Holocene, 9(4), 409–421, doi:10.1191/095968399666429937, 1999.

Sugita, S., Parshall, T. and Calcote, R.: Detecting differences in vegetation among paired sites using pollen records, The Holocene, 16(8), 1123–1135, doi:10.1177/0959683606069406, 2006.

585 Theuerkauf, M., Dräger, N., Kienel, U., Kuparinen, A. and Brauer, A.: Effects of changes in land management practices on pollen productivity of open vegetation during the last century derived from varved lake sediments, The Holocene, 25(5), 733–744, doi:10.1177/0959683614567881, 2015.

Theuerkauf, M., Kuparinen, A. and Joosten, H.: Pollen productivity estimates strongly depend on assumed pollen dispersal, The Holocene, 23(1), 14–24, doi:10.1177/0959683612450194, 2013.

590 Twiddle, C. L., Jones, R. T., Caseldine, C. J. and Sugita, S.: Pollen productivity estimates for a pine woodland in eastern Scotland: The influence of sampling design and vegetation patterning, Rev Palaeobot Palyno, 174, 67– 78, doi:10.1016/j.revpalbo.2011.12.006, 2012.

von Stedingk, H., Fyfe, R. M. and Allard, A.: Pollen productivity estimates from the forest—tundra ecotone in west-central Sweden: implications for vegetation reconstruction at the limits of the boreal forest, The Holocene, 18(2), 323–332, doi:10.1177/0959683607086769, 2008.

Wang, Y. and Herzschuh, U.: Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model, Rev Palaeobot Palyno, 168(1), 31–40, doi:10.1016/j.revpalbo.2011.09.004, 2011.

Wu, J., Ma, Y., Sang, Y., Meng, H. and Hu, C.: Quantitative reconstruction of palaeovegetation and
 development R-values model: an application of R-value and ERV model in Xinglong Mountain natural
 protection region, Quat Sci, 33(3), 554–564. (In Chinese with English abstract), doi:10.3969/j.issn.1001-7410.2013.03.16, 2013.

Xu, Q., Cao, X., Tian, F., Zhang, S., Li, Y., Li, M., Li, J., Liu, Y. and Liang, J.: Relative pollen productivities of typical steppe species in northern China and their potential in past vegetation reconstruction, Sci China Earth Sci, 57(6), 1254–1266, doi:10.1007/s11430-013-4738-7, 2014.

Zhang, P.-P., Xu, Q.-H., Gaillard, M.-J., Mu, H.-S., Zhang, Y.-H. and Lu, J.-Y.: Research of main plant species's relative pollen productivities and relevant source area of temperate coniferous and broad-leaved mixed forest in Northern China., Quat Sci, 37(6), 1429-1443 (In Chinese with English abstract), doi:10.11928/j.issn.1001-74